文章编号: 0253-2239(2008)Supplement-0134-04

激光加热的微塑性成形有限元模拟

王 匀 张 凯 董培龙 陆广华 朱永书 蔡 兰

(江苏大学机械工程学院, 江苏 镇江 212013)

摘要 针对难成形材料微构件成形困难的特点,提出基于激光双面加热的微塑性成形方法。采用有限元分析软件 ABAQUS,建立了基于激光加热的微镦粗圆柱形工件的热力耦合有限元模型,并对激光加热后工件的温度场分布和 微塑性成形进行了模拟和应力分析。结果表明,采用激光双面加热的方法可以为微塑性成形建立合适的温度场,激 光加热状态下的微塑性成形力明显降低,提高了微塑性材料的成形性能,拓宽了微塑性成形技术的应用范围。 关键词 激光技术;激光加热;微塑性成形;有限元;温度场 中图分类号 TG376.2 文献标识码 A doi: 10.3788/AOS200828s1.0134

Finite-Element Simulation of Microforming Based on Laser-Assisted Heating

Wang Yun Zhang Kai Dong Peilong Lu Guanghua Zhu Yongshu Cai Lan

(School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

Abstract To solve the forming difficulty in the microforming microparts made of hard-to-deform material, a novel approach about micro plastic forming based on laser-assisted double-sided heating method has been presented. Numerical simulations are completed and analyzed using a finite element method (FEM) softwave, ABAQUS to study the temperature field distributions and the stress distributions of the billet and the effect of laser-assisted heating on the characteristics of microforming. Accordingly, the coupled thermo-mechanical finite element model of cylinder billet is developed. The results show that an appropriate temperature field for microforming can be established using the laser-heating method, resulting in the decrease of microforming force and the improvement of formability of microforming material. The novel method will extend the applications of microforming.

Key words laser technique; laser-assisted heating; microforming; finite element method; temperature field

1 引

言

微器件在医疗生物工程、微型机器人、传感器、 微型数码家电等产品中有着广泛应用前景^[1]。深反 应离子蚀刻、硅微细加工、深度X射线光刻、电铸成 模、微塑铸(LIGA)、等离子体等微细加工手段已无 法满足三维复杂形状器件的加工。由于难加工材料 的微成形中,变形抗力大、易受材料种类、晶粒尺寸 和取向的影响,微成形质量不稳定,限制了加工材料 的多样性。而塑性成形在批量生产方面有很大优 势,成本低、质量可控,因此微塑性成形领域发展较 快,微锻、微挤压、微镦粗等微体积成形技术已作为 微成形的重要分支^[2~3]。

本文针对难成形的微小毛坯,提出一种基于激光 的双面加热微塑性成形方法,即以长脉冲红外激光束 通过光路系统对微小工件上下表面进行加热,通过激 光参量的控制和聚焦性可以实现对微小材料的可选 择性加热和控制,以此降低材料的变形抗力。

2 激光加热光路设计

基于激光的双面加热微塑性成形方法,设计一 套激光加热光路系统,如图1所示。

图 1 双面加热光路 Fig. 1 Double-sided laser-heating optical path

作者简介:王 匀(1975-),男,博士后,副教授,主要从事微成形、CAD/CAE/CAM 等方面的研究。 E-mail:wangyun@ujs.edu.cn

基金项目:国家自然科学基金(50605029)、中国博士后科学基金(20060390961)、江苏省自然科学基金(BK2006551)和高级人才启动基金(128300090,128300087)资助课题。

激光加热系统按照光路的传播路线依次经过激 光器、光束扩展器、准直器、分束镜,分成两束相同的 激光,然后分别经过反射镜、可调光阑和短焦物镜到 达微温挤压系统。

3 激光加热的数学模型

3.1 传热模型

激光加热是在短时间内完成热作用的复杂过 程。为得到便于数值计算的传热模型,作如下假设:

1) 所用激光束为基模高斯分布;

2) 激光加热时忽略表面辐射换热;

3)整个加工过程工件内部不含内热源。
 激光加热过程中传热控制方程:

$$\rho c \,\frac{\partial^2 T}{\partial t} = \lambda \Big(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \,\frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \Big), \qquad (1)$$

式中 T 为材料的温度, ρ 为材料的密度,c 为比热, λ 为导热系数。

3.2 热源模型

激光设备通过外光路系统后以热流密度的形式 施加热载荷。热源模型的选取对微成形工件温度场 以及应力场的模拟尤为重要。在热源热输入的分析 中,高斯分布热源和均匀分布热源是常用的两种模 型^[4~7]。均匀热源输入的热流密度在光斑直径范围 内均匀分布,网格划分较粗,计算时间较短,但是计 算精度不高。高斯分布热源模型输入的热流密度 *I* 呈高斯函数分布,高斯热源模型输入的热流密度 *I* 呈高斯函数分布,高斯热源模型需要在空间上将光 斑及附近区域的网格划分得较细,虽然采用 ABAQUS/Standard 在时间上要很多时间步进行迭 代,计算量比较大,但是计算精度高。本文采用高斯 分布的热源模型。

3.3 边界条件

根据所选的热源模型,有限元分析时输入的高 斯分布热源模型数学表达式为:

$$I = \frac{2\alpha P}{\pi R^2} \exp\left[-\frac{2r^2}{R^2}\right],\tag{2}$$

式中 I 为激光加热的热流密度, a 为激光吸收率, P 为激光输出功率, R 为激光光斑半径, r 为光斑某一 点离开光斑中心的距离。高斯分布的热源模型通过 改变模型中的各变量就可以相应地调整热源分布区 域和强度。

通过数学公式推导得到整个激光加热光斑的平 均热流密度计算公式为^[8]

$$I = \frac{1}{\pi R^2} \int_{0}^{R} \frac{2r_{\alpha}P}{\pi R^2} \exp\left[-\frac{2r^2}{R^2}\right] dr = \frac{0.865_{\alpha}P}{\pi R^2}.$$
 (3)

在激光加热微小工件之前,

$$T|_{t=0} = T_0, (4)$$

式中 T₀ 为室温, 一般取 20 ℃。

微小工件放置在空气中加热,与周围环境存在 着对流换热,传热学中第三类边界条件表示为:

$$q = -\lambda \frac{\partial T}{\partial n} = h(T - T_{\infty}), \qquad (5)$$

式中h为对流换热系数,q为对流换热的热流密度, T工件的表面温度, T_{∞} 为环境温度。

4 模拟模型的建立

4.1 二维模型建立

以微镦粗工艺为例说明基于激光加热的微塑性 成形效果^[9]。利用 ABAQUS 对激光加热微镦粗成 形过程进行分析模拟,首先建立激光加热和微镦粗 的几何模型。利用激光实现工件双面加热后进行微 镦粗工艺,凸模和凹模视为刚性体,如图 2 所示。

图 2 激光辅助加热的微镦粗模型。(a)微工件激光 加热模型,(b)微镦粗模型

Fig. 2 Micro upset model with laser-assisted heating.(a) Laser-heating model, (b) micro upset mode

4.2 模拟参量设定

工件形状为微圆柱体,尺寸为 $H \times d = 1.2 \text{ mm}$ ×0.8 mm,最终成形高度是 0.6 mm,工件材料为铝 合金^[10],弹性模量 E 为 69000 MPa,泊松比 μ 为 0.33,熔点是 660 °C。因为温度变化对密度的影响 较小,所以分析过程中密度为恒量, $\rho=2700 \text{ kg/m}^3$ 。 同时需要考虑工件与周边环境的传热,以及工件表 面与模具的热传导。取空气的自然对流换热系数 $h=10 \text{ W/(m}^2 \cdot \text{K})$,表面的接触摩擦系数取 0.1。 由于金属加热到一定温度时变形抗力明显加大,强 度增加,塑性下降。为了避免这种现象,结合国内外 的生产时间,将工件加热到 250 °C 左右进行微镦粗。

5 模拟结果与分析

5.1 温度场分析

采用有限元软件 ABAQUS 的热力耦合单元对

激光加热过程进行分析^[11,12]。采用激光输入功率 $\alpha P = 800 \text{ mW}$ 加热时间 t = 0.06 s 和 $\alpha P = 600 \text{ mW}$ 加热时间 t = 0.08 s,分别对坯料进行双面激光加热,加热区域为R = 0.1 mm。

图 3 为两种不同功率激光加热完成后的温度场 分布图,图中等温线呈卵圆形分布。由于采用双面激 光加热的方法,最高温度点出现在上下表面的中心加 热区域,最低温度点出现在微小工件的中心部位的两 侧,上下部分的等温线呈对称分布。靠近上下加热中 心区域,温度变化快,温度梯度大。随着高度的增加, 由于热量的减少和传热距离的增加等温线也逐渐趋 于水平状,温度变化比较缓慢,温度梯度小。

图 3 激光加热后等温线分布。(a) 800 mW, 0.06 s, (b) 600 mW, 0.08 s Fig. 3 Isothermal line of laser-heating at (a) 800 mW, 0.06 s, (b) 600 mW, 0.08 s

虽然图 3(a)和图 3(b)中的温度分布和变化趋势基本一样,但是图 3(a)中温度范围为 246.8~262.2 ℃,最大温差为 15.4 ℃,而图 3(b)中温度范围为 247.5~259.1 ℃,最大温差为 11.6 ℃。基于激光加热微镦粗研究需要温度分布均匀化,采用 $\alpha P = 600 \text{ mW加热时间} t = 0.08 \text{ s} 进行激光加热更能满足微镦粗要求。$

图 4 为采用 αP=600 mW 加热时间 t=0.08 的 激光加热过程。刚开始加热,由于最高温度点瞬间 吸收高热量,温度变化较明显,呈二次曲线变化,其 它点由于吸收热量较少,温度基本呈线性变化。随 着加热时间的增加和热量的稳定传导,最高点、最低 点还是任意一点的温度基本呈线性变化,各时间段 内的温差逐渐变大。

图 5 为分别采用 600 mW 和 800 mW 不同时 间,在微小圆柱的中心点处,沿高度方向上的温度变 化。图 5 中可以发现,在激光加热某一时刻,微小工 件的上下对称部分的温度相等。沿高度方向,激光加 热产生的温度呈鼓状分布。在 0.08 s 时,两种加热功 率产生的温度分布基本重合。相同加热时间下, 800 mW加热功率产生的温度明显高于 600 mW。 相同的时间间隔条件下,800 mW 的温度变化比 600 mW大很多,这种变化使工件在局部温度急剧 增加,影响工件材料的力学性能,不利于微镦粗成 形。因此,采用 aP = 600 mW 加热时间 t = 0.08 s 更适合这个微小工件的镦粗成形。

图 5 高度方向 T-t 关系($_{\alpha}P=600$ mW 和 800 mW) Fig. 5 Temperature versus time at altitude direction at 600 mW and 800 mW

5.2 应力场分析

采用 ABAQUS/Explict 对微镦粗过程进行模

拟分析,图 6 是冷镦粗成形和基于激光双面加热的 微镦粗成形后的应力分布图。 图 6 显示,在相同区域下,基于激光加热的微镦粗 成形后的应力明显小于常温下微镦粗成形下的应力。

图 6 冷镦粗和热镦粗应力分布图。(a)冷镦粗应力分布,(b)热镦粗应力分布 Fig. 6 Stress distribution for (a) cool upset,(b) hot upset

6 结 论

本文提出基于激光双面加热的微塑性成形方 法。利用 ABAQUS 建立了基于激光加热的微塑性 成形的有限元模型,研究了微型工件激光加热后温 度场分布和微塑性成形后的应力场分布状况。研究 表明,加热初始状态下热量以卵圆状向周围扩散,整 个工件的温度梯度较小,热量主要集中在加热区域, 而加热区域附近的温度梯度很大。加热完后的温度 场梯度明显增大,随着与加热区域距离的增加,热量 流动也逐渐趋于水平状。表明采用激光双面加热的 方法,温度分布均匀。

通过对常温下激光加热后微镦粗成形的模拟比较,得到了冷热两种不同成形工艺中的应力分布,结 果显示采用激光加热的微塑性成形明显减少成形力。

激光技术和微塑性成形技术的结合是一种崭新 的设计方法,为微塑性成形设备的研制和生产提供 了新的途径。

参考文献

- Wang Yun, Zhou Jianzhong, Dai Yachun et al.. Application of micro-forming technology in plastic processing [J]. Forging & Stamping Technology, 2004, (6): 81~85
- 王 匀,周建忠,戴亚春等.微成形技术在塑性加工中的应用研 究[J]. 锻压技术,2004,(6):81~85
- 2 Shen Yu, Yu Huping, Ruan Xueyu *et al.*. Metal microform technology[J]. J. Plasticity Engineering, 2006, 10(6): 5~8
 申 昱,于沪平,阮雪榆等. 金属微成形技术[J]. 塑性工程学报, 2006, 10(6): 5~8
- 3 A. Kratky, G. Liedl, R. Bielak. Laser assisted deep drawing [J]. Laser Assisted Machining, 2004, (4): 1125~1134
- 4 Matsuda F. Ikeuchik, Liao J. Weld. HAZ toughness and its

improvement of low alloy steel SQV-2A for pressure vessels[J]. Transactions of Joining and Welding Research Institute, 1993, $22(2): 215 \sim 221$

- 5 Tian D, Karjalainen L P, Qian B. Netal. Cleavage fracture model for granular bainite in simulated coarse-grained heataffected zones of high-strength low-alloyed steels [J]. JSME International J. Series, 1997, 40(2): 179~188
- 6 Shi Jingwei, Li Liqun, Chen Yanbin et al.. Numerical simulation of bending properties for sheet metal with different laser source modes[J]. Chin. J. Lasers, 2007, 34(9): 1303~1307 石经纬,李俐群,陈彦宾等. 不同激光热源模式下薄板弯曲特性 数值模拟[J]. 中国激光, 2007, 34(9): 1303~1307
- 7 Wang Xiufeng, Chen Guangnan, Hu Shiguang et al.. Simulation and verification of the dynamic micro-deformation under laser point source[J]. Chin. J. Lasers, 2004, 31(12): 1518~1522 王秀凤,陈光南,胡世光等.激光点热源作用下动态微变形的数 值模拟与校验[J]. 中国激光, 2004, 31(12): 1518~1522
- 8 Wang Yang, Tan Jianguo, Yang Lijun. The experimental study on laser bending of sheet metal[J]. J. Optoelectronics • Laser, 2003, 14(4): 415~418

王 扬,谭建国,杨立军.板材激光加热弯曲成型实验研究[J]. 光电子・激光,2003,14(4):415~418

- 9 Liu Shunfa, Cheng Hongbin. Calculating the temperature field of 3-D object heated by laser[J]. Acta Photonica Sinica, 2000, 29(3): 267~270
 刘顺发,陈洪斌. 激光加热物体的三维模型计算[J]. 光子学报, 2000, 29(3): 267~270
- 10 Xu Guoliang, Wang Xiaomo. *Engineering Heat Transfer* [M]. Beijing: China Electric Power Press, 2005. 236~237 许国良,王晓墨. 工程传热学[M]. 北京:中国电力出版社, 2005. 236~237
- 11 Wei Zaifu, Cha Hongkui, Wang Runwen. Physical analysis of the laser-induced temperature field [J]. Acta Optica Sinica, 1994, 14(4): 355~359
 魏在福,查鸿逵,王润文. 激光加热温度场物理分析[J]. 光学学 报, 1994, 14(4): 355~359
- 12 Huang Chenguang, Duan Zhuping. Numerical simulation on the micro-scale bending induced by pulsed laser beam[J]. Chin. J. Lasers, 2002, 29(3): 281~285 黄晨光,段祝平. 激光微弯曲成形机理的数值研究[J]. 中国激 光, 2002, 29(3): 281~285